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Theory for electric charging in turbulent pipe flow 
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on somewhat simplified profiles of turbulent eddy diffusivity and mean vcLacity 
in turbulent flow, an expression is derived for the convection current in a pipe where 
electrification occurs at the wall. The expression is in explicit analytic form, and 
applies for all turbulent Reynolds numbers and all fluid conductivities, from conditions 
where the Debye length is small compared with the diffusion sublayer (typical aqueous 
solutions) to conditions where the Debye length is large compared with the sublayer 
(typical liquid hydrocarbons). 

~ ~~~ ~ 

1. Introduction 

ing ’ current 
The term ‘charging’ in pipe flows refers to the presence of a convection or ‘stream- 

(1) I = 1; pZ 2nr dr,  

where q is the charge density in the fluid, v, is the axial velocity component, and a 
the pipe radius. Virtually all fluids have some electrical conductivity, even if very 
small, and hence contain some ionized species. The equilibrium condition between the 
charged species and a bounding wall generally induces a finite charge density in the 
fluid adjacent to the wall, and hence a convection current will occur whenever flow 
takes place. 

Charging is a matter of practical concern only in flows of very-low-conductivity 
liquids such as fuels and other liquid hydrocarbons, where high voltages can be built 
up in improperly grounded pipes, and electrostatic hazards may result (Klinkenberg 
& van der Minne 1958). Most such flows occur at high Reynolds number, and are 
therefore turbulent. 

A general theoretical description of charging is available for laminar pipe flows 
(Pribylov & Chernyi 1979), but for turbulent flows the situation is not so well in hand. 
Contributions have been made by Cooper (1953), Klinkenberg (1959, 1964) and 
Koszman & Gavis (1962~).  Cooper’s was a simple step: he adapted Helmholtz’s 
(1879) classical streaming current equation to turbulent flows by inserting into it 
Blasius’s correlation for turbulent shear stress. This gave him an expression for the 
high-conductivity limit, where the Debye length is small compared with the diffusion- 
sublayer thickness (laminar flow and a linear velocity profile being underlying assump- 
tions in Helmholtz’s expression). Cooper’s formula is useful for typical aqueous 
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electrolytes where the Debye length is measured in m, but it often does not apply 
to liquid hydrocarbons, where typical conductivities are so low that the Debye length 
is larger than the diffusion sublayer. 

Klinkenberg and Koszman & Gavis addressed the lower-conductivity limit. They 
argued that, when the Debye layer is thick compared with the diffusion sublayer, the 
charge is distributed approximately uniformly in the turbulent core, and a Nernst- 
layer approach can be used to describe the diffusion subla4yer. Their expression for the 
charging current is in approximate agreement with much, though by no means all, of 
the experimental data for turbulent liquid hydrocarbon flows (Koszman & Gavis 
19623; Goodfellow & Graydon 1968; Gibson & Lloyd 1970a, b ;  Schwing 1970). 

It is worth noting that a quite different turbulent-flow theory had been put forward 
earlier by Boumans (1957) ,  and taken up recently by Touchard (1978).  These authors 
did not, however, solve for the charge-density profile from basic principles. Rather, 
they obtained a charge profile for turbulent flow by making some ad h c  postulates 
which, althoughstateddifferently, are equivalent to the assumptions that (i) the charge 
density at  the wall, (ii) the charge density gradient at  the wall, and (iii) the total charge 
integrated over the pipe cross-section are all properties of the pipe and fluid, and 
independent of flow conditions. The resulting charge density distribution contains a 
discontinuity and is physically unrealistic. It is also totally inconsistent with the 
model presented here, which is based on the equations that govern the charge density 
in turbulent flows. 

Another flawed turbulent-flow theory is the ‘ high-conductivity ’ model proposed - 
rather tentatively, to be sure - by Koszman & Gavis (1962a)  for conditions where the 
charged region extends far outside the diffusion sublayer, but still not too far into the 
central region of the pipe flow, Koszman & Gavis derived their equation for this limit 
on the assumption that turbulence does not affect the diffusivity outside the diffusion 
sublayer, which is inconsistent with the definition of the diffusion sublayer. 

The purpose of the present paper is to derive a general solution for charging in 
turbulent pipe flows, based on the equations which govern the charge density. The 
result will be obtained in analytic form, and is applicable to all flow speeds and fluid 
conductivities. The solutions of Cooper and Klinkenberg/Koszman & Gavis appear 
as special limiting cases. 

Our one basic assumption, apart from presuming fully turbulent flow conditions 
and high Schmidt number, is that the charge density q in the fluid is small, in the sense 
that it arises from such a small imbalance of the positive and negative ions that 
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where F is Faraday’s constant and co denotes the concentration of either the positive 
or negative ions in the fluid under electrically neutral conditions and is related to the 
fluid’s electrical conductivity cr by 

K = f r (  K+ + K - )  being the average of the mobilities of the positive and negative ions in 
the fluid. When (2) applies, u is uniform in the fluid, independent of q .  The small- 
charge-density assumption, which also underlies most previous work in this area, 
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allows the formulation of the theory in terms of the conservation equation for charge 
density only, without reference to the conservation equations for the particular ionized 
species that give rise to the charge. At high charge densities, on the other hand, the 
conservation equations of the individual ionized species must be brought into the 
theory, which means that one must define the ionization and recombination reactions 
and their rate coefficients, or, at the very least, the equilibrium constant. None of this 
information is available for typical hydrocarbon liquids, nor is this kind of data likely 
to become available readily, considering that the dominant ionized species in liquid 
hydrocarbons are often unknown impurities. 

2. Equations and boundary conditions 
Since the velocity distribution is well known in pipe flows, we need only deal here 

with the equations for the charge distribution in order to evaluate the convective 
current of (1 ) .  The governing equations are the equation of charge conservation 

-+V.j  &I = 0, 
at (4) 

the current density j being given in the small-charge-density approximation by 
(Huber & Sonin 1977) 

Poisson’s equation for the electric field 

j = qv- DVg - oVq5, ( 5 )  

v2q5 = -q/s, (6) 

and the equations that govern the fluid’s velocity field. Here v is the bulk flow 
velocity, D = &(D+ + D-) is the average molecular diffusion coefficient (D,  and D- 
being the diffusion coefficients of the positive and negative ions respectively), $ is the 
electric potential, and E is the fluid’s permittivity. For an incompressible flow, (4)-(6) 
yield the charge-relaxation equation 

~ + v . V q - V . ( D V q ) + o q / E  at = 0. ( 7 )  

In  turbulentJEows one must deal with ensemble-averaged versions of these equations. 
Procedures for ensemble averaging are well known. If we confine our attention to (i) 
a steady, turbulent pipe flow with (ii) fully developed mean velocity profile - but not 
necessarily a fully developed concentration profile - under conditions where (iii) axial 
diffusion of charge is negligible compared with radial diffusion, the ensemble-averaged 
version of (7 )  is 

Here, Ex is the local ensenible-averaged velocity, is the local ensemble-averaged 
charge density, and we have made the usual assumption that the hrbulent contribu- 
tion viq’ to the radial current density is given by 
- 
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The primed quantities refer to the fluctuating components, and DT is a turbulent- 
diffusion coefficient. The cont,ribution to  the current density of the turbulent fluctua- 
tions in conductivity can be shown to be negligible as long as the low-charge-density 
assumption (2) applies. Consistent with our assumptions, the averaged radial and 
axial current densit'ies are given by 

- aq a$ 
jt= -(D+D,)-----, 

ar ar 
- . -- a$ 

ax 
jz = qvz - (T- . 

The averaged version of Poisson's equation is 

Equation (8) requires boundary conditions on q at the pipe inlet and at the pipe 
walls. At the inlet ?j is specified as having whatever value is appropriate for the source 
from which the fluid issues. For example if the fluid enters the pipe from an uncharged 
reservoir we set i j = O  at x = 0 .  

The boundary condition on the wall is less straightforward. Little is known about 
the electrification process a t  boundaries of liquid hydrocarbons, for which the present 
analysis is mainly intended. It suffices to assume, however, that a charge density tends 
to be induced in the fluid adjacent to the wall for some reason. For example, one of the 
ionic species in the liquid may suffer an oxidation-reduction reaction at  the wall 
interface. Suppose q w  is the charge density that would exist in the fluid next to the 
wall under equilibrium conditions, when all net fluxes - and the net current - there 
are zero. When the charge density q at  the wall is not equal to q,, a current will pass 
between the fluid and the wall. In the absence of specific data, we postulate a linear 
current-charge relation 

3 ,  j ,  = - [ q - q , ]  at  r = a, 
1qw1 

which contains two coefficients q andjw. We consider these to be empirical properties 
of the fluidlwall combination and the ionic composition of the fluid. q w  is the charge 
density that exists in the fluid next to the wall whenj, = 0 ;  j, is the magnitude of the 
current that passes between the fluid and the wall if q = 0 a t  the wall. The direction 
of the current is from the wall to  the fluid if q ,  > 0, and from the fluid to the wall if 
q w  < 0. Since (14) is linear, i t  applies t o j  and ij as well as t o j  and q. 

For an axisymmetric pipe (14) must be complemented by the symmetry condition 
of zero radial charge density gradient on the pipe axis. 

The ensemble-averaged equations are completed by specifying the average velocity 
profile Ez(r) and the eddy-diffusivity profile DT(r) for the turbulent pipe flow. For 
smooth-walled pipes, quite accurate semi-empirical expressions are available. 
Spalding (1961), for example, gives animplicit equation for Zr. Reichardt (1951) gives 
an expression for DT which Petukhov (1970) has found to be very adequate for 
describing mass-transfer processes a t  high Schmidt numbers (up to lo5), thus con- 
firming its accuracy inside the diffusion sublayer, and which Quarmby & Anand 
(1969) have verified in the regions out,side the diffusion sublayer. 
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I n  the present paper we take a more approximate approach in order to  derive an 
analytic solution. The analysis of $ 3  is based on the simplified eddy-diffusivity profile 

< D  ( O < y < S ) ,  

DT =xv*Y (6 < Y 6 f a ) ,  I = $xv*a ( i u  < y < a) .  

Here y = a-r is the distance measured out from the wall, 

is the friction velocity, 7w being the (averaged) shear stress at the wall and p the fluid 
density, and 

is the effective diffusion-sublayer thickness, v being the fluid’s kinematic viscosity and 
X = v / D  the Schmidt number. x is von KBrmih’s constant, 

x = 0.4, ( 1 8 4  

and k and rn are empirical coefficients, for which we suggest the following values as 
best estimates for dealing with high-Schmidt-number flows : 

k = 11.7, m = 3. (186) 

Equation (15) takes account of the major accepted features of the eddy-diffusivity 
profile: DT is small compared with D very near the wall, where yv*/v is sufficiently 
small, but increases rapidly with y (as y3, according to  Reichardt) until it rather 
abruptly overwhelms D as y reaches a value of about 6,  6 being still very small com- 
pared with the pipe radius a. Thereafter it increases linearly with y until y becomes 
measurable compared with the pipe radius a (about 0-2a, say), after which it levels 
off to an approximately constant value in the core region of the flow. The value of D,  
in the core region scales with the friction velocity as indicated. The values of k and m 
in (18 b )  are obtained by making the identification 6 /2a  = N-l ,  where N is the diffusion 
Nusselt number based on pipe diameter, and using Petukhov’s high-Schmidt-number 
correlation for N .  Petukhov’s high-Schmidt-number correlation is identical with the 
correlation of Reichardt in the same limit, and agrees very well with experiment. (It 
differs somewhat from Deissler’s (1955) form, which would imply k = 8-96 and 
m = 4.) Outside the diffusion sublayer our profile fits experimental data (Laufer 1954; 
Quarmby & Anand 1969) in the linear region, but overestimates the diffusivity some- 
what in the uniform-diffusivity core of the flow. The latter has no perceptible effect 
on our prediction of a streaming current, since at  high Schmidt numbers it turns out 
that only the eddy diffusivity near the wall is important. 

For the velocity profile we use the approximation 

where V is the superficial velocity in the pipe, a n d p  is the fluid viscosity. Equation (1 9) 
is accurate in the region inside the diffusion sublayer, where, i t  turns out, accuracy is 
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needed. We shall see that accuracy in Gx is not paramount outside 6, provided the 
volume flow rate is correct, as is the case in (19). 

The shear stress T~ in (16) and (19j can be expressed in terms of the superficial 
velocity V by means of several available friction-factor correlations. The simplest is 
the well-known one of Rlasius, 

Tw/pV2 = 0.0396R-4, 

where R = pV2a/p (21) 

is the Reynolds number. Blasius’s correlation is accurate only for R < lo5. More 
universal, but less simple, correlations are available, such as the widely used one of 
Prandtl (Schlichting 1979). 

3. Analytical solutions for infinite pipes 
3.1. Equations 

By ‘infinite’ pipes we mean pipes that are so long that both the charge density and 
the radial electric field have reached distributions that no longer change with x. (We 
do not, however, rule out the presence of a uniform axial electric field Ex = -@/ax.) 
The governing equations (8) and (12) reduce to 

?j can be independent of x only if the radial current density a t  the wall is zero, 
- 
j r  = 0 at r = a ,  (24) 

? j = q w  a t  r = a .  (25) 

and it follows that the boundary condition (14) reduces to 

Equation (24) implies that a t  the wall the radial diffusion current, which arises from 
a charge density gradient (y being equal to qw a t  the wall, but tending to relax away 
from the wall), is exactly counterbalanced by a migration current so as to make the 
net current zero. Using (10) and (23), this statement can also be written as 

Alternatively, (26) can be viewed as being an integral of (22), the condition of zero 
radial current being implicit in the assumption of an ‘infinite’ pipe. 

3.2. Previous analytical solutions : two limiting cases 
Two analytical solutions have been previously identified : the classical Helmholtz 
solution for high-conductivity fluids, adapted to turbulent flow by Cooper, which 
applies a t  the high conductivities typical of aqueous electrolytes, and the solution of 
Klinkenberg (1959, 1964) and Koszman & Gavis (1962a), which we shall call the 
diffusion-layer-dominated solution, and which applies under special condit,ions more 
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FIGURE 1. Characterization of operating conditions as a point on the (az /h2 ,  a/&-plane, showing 
region where the solutions of Cooper and Klinkenberg/Koszman-Gavis are applicable. Assump- 
tions are x = 0.4, k = 11.7, m = 3, S = 500. 

typical of very-low-conductivity liquids. Each of these solutions, we shall see, applies 
in a certain limit of the parameters h2/Sa and a/S, where 

h = (sD/a)J (27) 

is the Debye length, and 6 is the diffusion-sublayer thickness. 
We note first that  on a map of h2/S2 ws. a/S (figure 1) turbulent-flow solutions apply 

only for a/& larger than a minimum value corresponding to  the minimum Reynolds 
number a t  which fully turbulent flow occurs. The latter is about 4000. Using Blasius’s 
empirical formula and (17 )  and (18), we obtain 

(;) 21 12274, 
min, turb 

which shows that a/S is always large in turbulent flow, particularly when S 3 1 .  
Debye-layer-dominant solution (h2/62 < 1). The diffusion layer 8 measures the 

thickness of the laminar sublayer near the wall, and the Debye length measures the 
distance to which the charged layer penetrates into the fluid under laminar conditions. 
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FIGURE 2. Sketch of  charge distribution near wall for (a)  h2 < a2, (b )  ha & P. 

If h2/S2 4 1, the entire charged layer (the diffuse double layer) is confined to a region 
very near the wall where turbulent diffusion is negligible and where the mean velocity 
increases linearly from zero (see figure 2a) .  Helmholtz (1879) showed that when these 
conditions apply, and when h < a, as is the case when 6 < u and h < 6, the convective 
current in an infinite pipe is given by 

(29) 
2nu 

P 
7 w €5, I m -  

where 
the wall by 

is the zeta-potential of the wall, or $(a),  related to the charge density q w  at 

( 30) 
< = - - - *  &? w 

fl 

Equation (30) follows from (10) and (2),  with DT 4 D. Equation (29) can thus be 
expressed as 

2 
-- I m  -=.(a) . 
qwrra2V pV2 

If one accepts Blasius’s correlation, (20), for 7w, (31) can be expressed as 

This simple adaptation of Helmholtz’s equation to turbulent flow in the small-Debye- 
length limit h2/J2 < 1 was first derived by Cooper. 
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Diffusion-layer-dominated solution (h2/a8 4 1 ,  h2/aS 9 1). When the Debye length 
is large compared with the diffusion layer (h2/a2 9 l),  the charged region protrudes 
into the turbulent-flow region outside the diffusion layer as indicated in figure 2 ( b ) .  
What is more, because the turbulent diffusivity outside the diffusion layer is so much 
higher than the diffusion coefficient inside the layer, the charge gradients in the 
turbulent region will be much lower than those in the diffusion layer. An approximate 
solution for the convection current can be obtained quickly as follows. Let 

be the average charge density in the flow (figure 2b). We make two assumptions. First, 
that the average charge density is low compared with that of the wall, 

q a v  < q w .  (34) 

Secondly, that, although qav is low, the bulk of the integrated charge is in fact spread 
out in the turbulent core region rather than inside the higher-charge-density diffusion 
layers, 

These assumptions allow the flux-balance condition a t  the wall (26) to be written as 

q w  2na8 na2qav.  (35) 

or 

D p w  5 v  
6 -  2 e ’  

(37) 

and, since the bulk of the charge is distributed in the core where the mean axial speed 
is quite uniform, the convection current 

is to a good approximation given by q a v n a 2 V ,  which leads to 

This is in essence the solution of Klinkenberg and Kozman & Gavis, except that their 
derivation, as well as their treatment of the wall boundary condition, was somewhat 
more restrictive (specific). Two conditions must be satisfied for this solution to be 
valid. The first is (34), which is equivalent to h2/a8 < 1. The second is (35), which is 
equivalent to h2/P + 1.  Figure 1 shows the region of validity on a map of h2/# us. a/8.  

If we substitute for S from (17), and use Blasius’s correlation for 7w, (39) takes the 
form 

Equation (40) can be reduced to Klinkenberg’s and Koszman & Gavis’s result if one 
makes an appropriate identification of q w  and sets k = 8.96 and m = 4, consistent 
with Deissler’s correlation for diffusion in pipe flows. We prefer the values k = 11.7 
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and m = 3, which Petukhov has shown to represent diffusion data better a t  high 
Schmidt numbers. With the latter values we have 

Koszman & Gavis recognized, after comparing their theory with experiment, that 
their solution was subject to the assumption h > 6, but not that there was an additional 
assumption implied, h2/aS < 1. Nor did they - or Klinkenberg - realize that the 
charge distribution in the pipe does not have to  be uniform outside the diffusion 
sublayer for (40) to  apply. 

3.3. Present analytical solution 

Using the approximate equations (15) and (19) for D, and V,, and the additional 
simplification of treating the problem as being plane in the region 0 . 7 5 ~  < r < a, it is 
possible to derive an explicit analytic solution which is valid for all turbulent flow 
conditions. 

Using (17) and (15), we cast (22) into the forms 

= (0  < i j  < 5) (region I), ago 

~ ~ ( r ' ~ )  1 a %I11 = c c 2 ~ I I I  (0 < r' < 0.75)  (region 111)) 

I 

where q E q/qw, i j  = y /a ,  i = r/a = l - y / a ,  (43) 

and (44) 

k, x and m being the empirical coefficients in (15). Note that the parameter 

a! = a/h,  (45) 

is the ratio of the pipe radius a to the Debye length A, based on the turbulent eddy 
diffusivity in the core of the flow, 

Equation (45) follows from (44) and (17) .  
The solutions to (42) are 

PI = C, cosh (: i j )  + C ,  sinh (f i j )  )) 

where I ,  and K ,  are the nth-order modified Bessel functions of the first and second 
kind respectively. 
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The integration constants C,, . . . , C, are evaluated by applying the two general 
boundary conditions 

q 1 = l  a t  y ” = O ,  

1 %I11 

a i  - = 0  at r = O ,  

the conditions that the charge density be continuous at  the two region interfaces, 

qI =qII at y” = S/a’, 

PI, = PI,, at y” = 0.25, 
(49) 

and the conditions that the radial electric field be continuous at  the interfaces. Using 
Gauss’s law, and (10) withj? = 0 to eliminate the electric field, the continuity condi- 
tions for the radial field can be expressed in the form of integral constrainh: 

After some algebra, we obtain the following expressions for C,, ..., C,: 

and I ,  and K ,  are the nth-order modified Bessel functions of the first and second kind. 
Equation (471, with the coefficients as given in (51) and (52), defines the charge 

distribution in the pipe under general turbulent-flow conditions. 
The convection current 

I z Joaqc,2nrdr, (53) 

can now be evaluated by piecewise integration over the three regions 1-111, using 
the approximate velocity profile of (1  9) : 
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With the appropriate substitutions, and using the fact that  S/a < 1 ,  one obtains 
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A2 

qwna2V pV2a2 
-- Im - R 5 - [( ( 6 / A )  sinh (6/h) - cosh ( & / A )  + 1 )  

+ C,( (??/A) cosh ( & / A )  - sinh (8 /h) )]  +%I,(&) 
a 

- 5 a [ K,( $a) - 2 ( ;)+ K ,  (a (31 + 2 I,( $a). ( 5 5 )  

Now r w / p V 2  is a function of R only, and a/6 is therefore a function of only R and S. 
Equation ( 5 5 )  therefore expresses the dimensionless convection current as a function 
of ( ~ / h ) ~ ,  a/6 and 8. This solution can be reduced to a simpler, explicit form by con- 
sidering certain limits in the parameters ( ~ / h ) ~  and a/8. 

High-a limit. The limit a B 1 corresponds to  conditions where the Debye length 
based on the turbulent core diffusivity is small compared with the pipe radius, and 
as a consequence, the charge density is non-zero only in a region close to  the wall. 
Whether that region is smaller or larger than the diffusion layer is left open. Expanding 
the Bessel functions for large a and keeping only leading terms, we obtain from (51) 
and (52) 

(56) i 
cosh ( & / A )  
sinh (81 A )  ' c, N - 

c, 21 
c, -f 0,  

c, -+ 0. 
1 

( k ~  S1-l/")+ IZ,(a(S/a)*sinh (6 /A) '  

Strictly speaking, the above expression for C, is derived for a & 1 and a(d/a)+ < 1. 
However. 

becomes comparable to unity only when 6/h is very large, S being a larger number. 
At very large &/A,  C, - 1 regardless of a(S/a)+, and hence (56) is a good approx- 
imation for all a(8/a)h. Also implicit in (56) is the assumption that 

which is satisfied for values of 8/h that  range from very small to  very large compared 
with unity. 

Equations (47) and (56) give the charge-density distribution in the pipe. The 
current density is obt,ained from (55 )  as 

This expression is valid for large a, but otherwise arbitrary, conditions. For &/A+ co, 
(59) reduces t o  Cooper's result (31). For 8/A --f 0,  it reduces - the first term on the right 
then being small - to  our version of Klinkenberg's and Kozsman & Gavis's result (39). 
Note, however, that in this limit of high a the charge density outside the diffusion 
layer is non-uniform when S/A-+O, not uniform as assumed by Klinkenberg and 
Koszman & Gavis. 
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Low-a limit. I n  the limit of small a the pipe radius is small compared with the 
Debye length based on the core turbulent diffusivity, and the charge density may 
therefore be expected to be uniformly distributed in the turbulent regions outside the 
diffusion sublayer. Noting that, if a is small, then a(S/a)* and & / A  are also small, we 
expand the terms in (51) and (52) for small 01, small a(b/a)* and small $ / A ,  keep only 
leading terms, and obtain 

5a/ 8h 
1 + 56a/8h2’ 

c, = - 

1 c,=c - c4+ 0. - 1 + 56a/8h2’ 

The charge density is indeed distributed uniformly in the turbulent regions outside 
the diffusion sublayer, a t  a value which is qw when 6a/h2 < 1 and less than qw other- 
wise. 

I n  the same approximation, the convection current is obtained as 

The term in (55) involving 7w/pV2 is negligible in this limit. Equation (61) ,  un- 
fortunately, shows some of the inaccuracies we have introduced into the problem by 
modelling the region 6 < y < 0 . 2 5 ~  as being plane. For 6a/h2 < 1, the charge density 
is everywhere q w ,  and the right-hand side of the equation should clearly be unity, 
not +;. The quantity +g simply represents the ratio of our model’s flow area 
n ( 0 - 7 5 ~ ) ~ +  2na(0-25a) to the real flow area ra2. The term Q in the denominator is also 
an approximation: the correct value should be Q. The origin of the Q can be under- 
stood by considering the development, valid for 6a/h2 < 1, that  led to  (39). In  this 
development the charge density in the core (uniform, in our present case) is obtained 
by equating Dqw/6 with aE, at r -N a, and E, at r N a is evaluated from 

2naeE, 10 q2nr dr. 

This gives the factor as &. In  our present case, we treat the region 0 < y < 6 as plane, 
and compute E, from 

r 0 . 2 5  

which gives rise to  the Q instead of the correct 4. 

solution for a 4 1 as 
Recognizing the artifices introduced by our approximation, we write the correct 

Our equation (61) overestimates the correct solution by 6 yo a t  6a/h2 < 1,  and under- 
estimates it by 15 % a t  ba/h2 $ 1. Note that similar difficulties did not arise in the 
limit a 9 I ,  where the charge was distributed near r 2: a ,  and the one-dimensional 
approximation gave accurate results. 
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A general expression for charging current. When the operating point passes through 
the region where the value of a goes through unity, neither (59) nor (64) is, strictly 
speaking, supposed to be applicable. However, in this region 6a/h2 is large compared 
wit,h unity, and & / A  is small (see figure 11, and (59) reduces to the same form as (64) 
(note that the first term in (59) is small when a is of order unity). This suggests t'hat the 
following expression should accurately represent I, for all values of a :  

Equation (65) reduces to (59) in the limit of high a, and to (64) in the limit of low a. 
For a in the transition region near unity, it reduces to the form - independent of the 
specific value of ct - shared by both (59) and (64). 

Equation (65), then, approximates the solution for all turbulent-flow conditions 
and all fluid conductivities. 

4. Correction for the effect of finite pipe length 
The expression for charging current derived in 3 3 applies for 'infinite' pipes where 

both the velocity and charge distributions have attained asymptotic, unchanging 
forms. In this section we consider how the charge evolves in finite pipes, and how the 
asymptotic state of the previous analysis is attained. 

We assume in what follows that the velocity profile is fully developed throughout 
most of the pipe. Since the development length for the velocity profile in turbulent 
flow is conservatively about lo2 pipe radii (Schlichting 1979), this means that we 
restrict our consideration to  pipes that are longer than several hundred radii. 

When the uncharged fluid first enters the pipe, the charge density is everywhere 
zero, including in the region adjacent to the pipe wall. As a result, a current will pass 
between the fluid and the pipe (14), and the charge density in the fluid at  the wall 
will begin to  rise toward the equilibrium value qw.  If the exchange current in (14) is 
very large compared with the actual current a t  the wall, the charge density a t  the wall 
will be very close to qw,  regardless of the fact that current passes between the fluid and 
the wall. In what follows, we shall assume that this is the case. Thus, the boundary 
condition at the wall will be 

q = q w  at r = a ,  (66) 

throughout the pipe, including the inlet region. The charge set up at  the wall disperses 
into the body of the Aow, fed by current from the wall. The evolution of the charge 
distribution in the turbulent flow is governed by (8). 

The high-conductivity limit ( A  < 6 ) .  When the conductivity is so high that h < 6, the 
development length for the charge density is short compared with that of the velocity, 
and hence the infinite-pipe expression for charging current is always applicable as 
long as we restrict our consideration to pipes that are longer than several hundred 
radii. 

That this is so can be demonstrated by estimating the charge-layer development 
length. In the limit h < 6 the charge is confined to  a region h near the wall. The de- 
velopment length is approximately the product of h2/D,  the time it takes charge to 
diffuse to a distance h from the wall, and rwh/,u, the characteristic mean velocity in 
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the charged layer inside the viscous sublayer. The charge-density development length 
L is thus of the order 

L rwh3 
a paD' (67) - m- 

which can be rewritten as - 17w R2 (;)38 
a 4pv2 

- 1.6 x 104R-8(h/6)3, (68) 

where we have used (17), (18) and (20) to get the last expression. Since h < 6, (68) 
shows that L / a  is very small compared with unity, even a t  the lowest turbulent 
Reynolds numbers, L can safely be taken to be negligible if the pipe length is measured 
in hundreds of radii or more. The charge density is thus fully developed whenever 
h < 6. 

The moderate and low-conductivity limit ( A  3.6). In  this limit is is convenient to 
follow the integral approach used by Koszman & Gavis ( 1 9 6 2 4 .  We integrate (8) from 
r = 0 to r = a, and divide by na2: 

Next, we make two assumptions, to be verified later. First, that the total charge in 
the pipe is large compared with the charge contained in the diffusion sublayer, or 

qav na2 9 q (70) 

where qav is defined by (33). Secondly, that the charge gradient a t  the wall can be 
approximated by 

If these two assumptions apply (more on that below), (69) simplifies to 

ax a 6 
v-+- %av 20(qw-gav)+:gav = o. 

The mechanism of charging is as follows. As the fluid enters the pipe, it encounters 
a non-equilibrium charge condition a t  the wall. A current from the wall results, and 
the charge density quickly (immediately, in our present model) rises to qw a t  the wall, 
and diffuses from there across the diffusion sublayer into the turbulent core of the 
flow (the second term in (72)), causing a rate of increase (the first term) of average 
charge, most of which is in the core. The average charge in the core, however, sets up 
an electric field a t  the wall, and this in turn results in a migration current which tends 
to counteract the diffusion current and reduce the rate a t  which charge is fed to the 
core (this is the last term in (72)).  At sufficiently large x the diffusion and migration 
currents exactly balance, and the final asymptotic state results. 

Assuming that qav = 0 a t  x = 0, the solution to (72) is 

where 
€ v/a 

1 + 2A2/a8 
L =  (74) 
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is a characteristic charge development distance. The convective-charging current 
I = qav nu2 V is thus given by 

I = Im( 1 - e-"/L), (75)  

where 
qw7ru2v 

1 + aS/2A2 
I ,  = 

is the charging current for an infinite pipe in this limit of S < A. 
There remains the task of verifying that our simplifying assumptions (70)  and (71)  

are consistent with our result. To get the most conservative test of (70)  we substitute 
from (73)  and (74) for q a v  in the limits x < L and aS/A2 a 1 (high conductivity) and 
find that (70) is equivalent to  

(77) 
Ic - a +RX (!$2. 

U 

Using (18) and (20) in t,he defining relation for 6, we have 

and hence our requirement reads 

(79)  
X 

U 
- 7 x 1 0 3 ~ - W .  

This inequality is satisfied for typical values of R and X for pipes longer than about 
103a, and it remains a fair approximation even a t  the lowest fully turbulent Reynolds 
numbers if the Schmidt number is 500, say. 

The first requirement for the second simplifying assumption (71) is that the charge 
density be linear in y inside the diffusion sublayer. That this must indeed be so can be 
seen by examining the orders of magnitude of the various terms in (8) inside the 
sublayer, where .U3: N r w & / p  and D,/D < 1. Such an examination shows that the 
fractional change in aq/ay across the diffusion layer is equal to a term - arising from 
the last term in (8) - of order Sz/A2, which is small in this case, plus a term - arising 
from the first term - of order 

Inserting (79) )  (20) and (74) ,  it becomes clear that  this term, too, is very small a t  all 
typical turbulent-flow conditions. Hence the charge gradient is indeed constant inside 
the diffusion layer. 

The second requirement for (71) is that the charge either be distributed at about the 
value qav in the turbulent core outside the diffusion sublayer, or, if that is not the 
case, that  qav < qw,  so that  the effect of in (71)  is negligible. This requirement is 
satisfied. For a < 1, we have seen that the charge is distributed uniformly in the core 
(note that the infinite-pipe solution correctly indicates the shape - though not the 
level - of the charge-density profile in the turbulent core, since the development length 
for the tubulent dispersion of charge in the core is the same as that for the velocity 
profile, and hence small compared with the pipe lengths being considered). For a > 1, 
the charge distribution is non-uniform, but qav < q w .  Equation (71)  thus remains a 
good approximation at all values of a. 
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The assumptions on which (74) is based are therefore justified. Note that (74) differs 
from the development length derived by Koszman & Gavis ( 1 9 6 2 ~ )  through the term 
2hz/a6 in the denominator. This term is important only in the limit of extremely low 
conductivity, when 2h2/a6 $ 1. I n  this limit the development length is not the elec- 
trical relaxation length eV/cr, as derived by Kosznian & Gavis, but is completely 
independent of fluid conductivity, and controlled only by the diffusion sublayer. 

An expression for  the general case. Our analysis is restricted to pipes longer than 
several hundred radii, for which the velocity profile can be considered to be fully 
developed throughout most of the pipe. We have shown that, when A < 6, the charge 
density is always fully developed in such a pipe, and that, when h $ 6, the effect of 
pipe length on the charging current is given by (74) and (75). Now, one can show quite 
straightforwardly, using the relation for 8 and h given in $2, that (74) and (75) predict 
a correction factor either equal to unity or very close to  unity for all fully turbulent 
flow conditions if one extrapolates to h of order 6 and smaller than 6. Thus, (74) and 
(75) blend into the length effect (or absence thereof) for h < 6 before the approxima- 
tions on which they are based become invalid. It follows that (75) describes the length 
effect accurately for all conditions, if I ,  is taken as the general expression (65) for 
charging current for an infinite pipe. 

5. Summary 

pressed as 
We have shown that the convective current in a turbulent pipe flow can be ex- 

I = I,( 1 - e - Z i L ) ,  (81) 

The fluid’s conductivity enters these equations through the numerator in L and 
through t,he Debye length 

h = (sD/cr)k (84) 

The turbulent-flow conditions are defined through the Reynolds number R = pV2a/,u, 
the shear stress 7, at the wall, and the diffusion-sublayer thickness 6. We suggest a 
diffusion-sublayer thickness consistent with the high-Schmidt-number mass transfer 
data of Petukhov (1970) : 

For the shear stress one can use Blasius’s simple correlation 7 ,/p V2 = 0.0396R-i, or, 
if better accuracy is required for R > lo5, for example Prandtl’s implicit expression 
(Schlichting 1979). 

To apply our equation one needs to  know not only the usual flow variables, but the 
diffusion coefficient@) of the ionic species and, most importantly, the equilibrium 
charge density qw in the fluid a t  the pipe wall. This latter is an interfacial property of 
the wall/fluid combination which can in principle be measured. 
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The results obtained here are based on several key assumptions. 
(i) The velocity profile is assumed to be fully developed throughout the pipe. This 

restricts the solution to pipes that are several hundred radii - a figure of lo3 radii can 
be taken as conservative - or more in length. 

(ii) The charge density is assumed to be everywhere small, in the sense of (2).  
Since the charge density is nowhere greater than q w ,  this requires that \awl < Pc,. 

(iii) The solution for charge development in a finite pipe assumes that the actual 
current a t  the wall is small compared with the exchange current that characterizes 
the chargelcurrent relation a t  the wall [see (14)], so that q N q w  a t  the wall even if 
the current is nonzero. There being no information available on typical chargelcurrent 
relations at  boundaries of liquid hydrocarbons, little can be said about the reasonable- 
ness of this assumption at  this time. 

Some simplifying assumptions were also made in the governing equations. The one 
which probably has the most important effect on our solution is our oversimplified 
representation (19) of the mean axial velocity profile. This will introduce some in- 
accuracy into our solution when h - 6, but not when h Q S or h 6. Some inaccuracy 
is, however, a not-unexpected price for a completely explicit,, analytic solution that 
covers all turbulent flow conditions. 

A comparison of the present theory with available experimental data will be 
presented in a later paper. Abedian (1979) has already shown that with some excep- 
tions, for which reasons can be found, the present theory is in essential agreement 
with available well-documented data, including the very -high-Debye-length data of 
Hampel & Luther (1957), which did not‘agree with Klinkenberg’s (1959, 1964) and 
Koszman & Gavis’s (1962~~)  theories. These comparisons are based, however, on 
certain assumptions about the wall charge density q w ,  of which no direct measure- 
ments have ever been made in liquid hydrocarbons: one must assume that q w  is a 
property of the fluid/wall combination, and is independent of flow conditions, but 
scales in direct proportion to  the ion concentration co. 

This research was supported by the National Science Foundation under Grants 
ENG-7620283 and 7826547. 

R E F E R E N C E S  

ABEDIAN, B. 1979 Ph.D. thesis, Massachusetts Institute of Technology. 
BOUMhNS, A. A.  1957 Physica 23, 1007-1055. 
COOPER, W. F. 1953 Brit. J .  Appl .  Phys. 4 (Suppl. 2), 511-515. 
DEISSLER, R.  G. 1955 NACA Tech. Rep. no. 1210. 
GIBSON, N. & LLOYD, F. C. 1970a Chem. Engng Sci. 25, 87-95. 
GIBSON, N. & LLOYD, F. C. 1970b J .  Phys. D: Appl. Phys. 3, 563-573. 
GOODFELLOW, H. D. & GRAYDON, W. F. 1968 Chem. Engny Sci. 23, 1267-1280. 
HAMPEL, B. & LUTHER, H. 1957 Chemie-fng.-Tech. 29, 323-329. 
HELMHOLTZ, H. 1879 Ann. Physik und Chemie 243, 337-382. 
HUBER, P. W. & SONIN, A. A. 1977 J .  Colloid Interface Sci. 61, 109-125. 

KLINKENBERC, A. 1964 Chemie-Ing.-Tech. 36, 283-290. 
KLINKENBERC, A.  & VAN DER MINNE, J. L.  1958 Electrostatics in  the Petroleum Industry. 

Elsevier. 
KOSZMAN, I. & GAVIS, J. 1SBZn Chem. EngngSci. 17, 1013-1022. 

KLINKENBERC, A. 1959 Genie Chimique 82, 149-157. 



Electric charging in turbulent pipe flow 

KOSZMAN, I. & GAVIS, J. 1962b Chem. EngngSci, 17, 1023-1040. 
LAUFER, J. 1954 N A C A  Rep. no. 1174. 
PETUKHOV, B. S. 1970 In Advances in Heat Transfer (ed. J. P. Hartnett & T. F. Irvine), vol. 6. 

PRIBYLOV, V. N. & CHERNYI, L.  T. 1979 Fluid Dynamics 14, 844-849. 
QUARMBY, A. & ANAND, R. K. 1969 J .  Fluid Mech. 38, 433-455. 
REICHARDT, H. 1951 Arch. Ges. Wumetechnik 6/7, 129-143. 
SCHLICHTING, H. 1979 Boundary Layer Theory, 7th edn. McCraw-Hill. 
SCHWING, R. C. 1970 J .  Colloid Interface Sci. 32, 432-443. 
SPALDING, D. B. 1961 J .  Appl. Mech. 28, 455-457. 
TOUCHARD, G. 1978 J .  Electrostatics 5, 463-476. 

217 

Academic. 


